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Fire Station Meeting Room 
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We will be meeting again in the room beside the Fire Station that is a block west of McLoughlin 

Boulevard at the corner of SE Oak Grove Boulevard and SE East Street 

From the south, take I-205 and use exit 9 just across the bridge over the Willamette River onto 

McLoughlin Blvd.  Oak Grove Blvd. is about 3 miles north along McLoughlin. 

 From the north along I-5, it is best to take the Broadway exit, then turn south on Martin Luther 

King Blvd.  This will eventually become McLoughlin Blvd.  The total distance from the Broadway exit to 

Oak Grove Blvd. is about 8 miles.  Do not get shuffled off onto the Milwaukie Expressway! 

 From the north, the best way to go is along I-205.  Take exit 12 and go west onto SE Roots Road.  

When it ends, jog south on SE Webster Road to Jennings Avenue, which  crosses McLoughlin Blvd. in 

about 1.5 miles.  Turn right and go about 1 mile to Oak Grove Blvd.  If you miss exit 12, you can 

alternatively use the Gladstone exit (#11) onto Oatfield Road, which crosses Jennings Avenue after 

about 1 mile.  Turn left and proceed to McLoughlin Blvd. 

 There is  a sketch of all this on the last page of this issue. 
 

Schedule for the day; 
 

 Please note that we will be setting up for the day starting a little before 10am.  Don’t forget to 

bring a box or two of pieces with identification and/or location information to put on the give-away table 
 

In the afternoon after a short business meeting, Doug Merson will be talking and showing 

pictures of the minerals he has accumulated from Mt. Ste. Hilaire.  If you have pictures that you would 

like to share with us, we will have computer and projector available for your use. 
 

 This meeting, let’s put together what we have in our collections from Mt. Ste. Hilaire so that we 

can pass them around and learn from them.  Doug will have representative pieces for us to compare to, 

so maybe we can identify some of the material that we have been unsure about.  Make certain that things 

are properly boxed with your name on them so that they get back to you safely before the end of the day.   
 

Lunch will be the usual pot-luck, with the Group supplying basic sandwich material.  Please 

bring chips, condiment, salads, and desserts to add to the feast. 
 

Dinner plans will be made at the meeting.  Please join us if you are able. 
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Miller Indices revisited 
 

Don Howard 

 

 Since the articles in this issue, and the last one as well, refer over and over to Miller Indices, I 

thought that a quick review of what they are and how they work might make some of what is being said 

make more sense.  First and foremost, a Miller Index is the name of a particular face in a crystal.  

Knowing how to name a face is the first step in recognizing it, just as knowing the name of your friend 

immediately brings their features to mind. 
 

 The planes of a crystal are named according to 

their intercepts along the three crystallographic axes.  

Consider the diagram at right.  The plane shown in red 

intersects the x-axis at 1 unit, the y-axis at 2 units, and the 

z-axis at 4 units.  Instead of using the intercepts directly, 

we use their reciprocals:  (1, ½, ¼) .  Then we clear the 

whole thing to whole numbers by multiplying by the least 

common denominator, in this case 4 :  (421) .  If this were a 

face on a cubic crystal, its name would be (421). 
 

 Why, you might ask, go to the trouble of taking 

reciprocals?  There are basically two answers to that 

question, one practical and one theoretical.  The practical 

one can easily be seen if you consider a plane one unit down parallel to the xy plane.  The intercept on 

the z-axis is -1 unit.  But it does not cross the x- or y-axis.  We say that the intercept is infinitely far from 

the origin.  If we used the intercepts directly, we would need a bunch of infinity-symbols, like this  ∞ .  

My computer happened to have one, but you sure wouldn’t find one on a typewriter keyboard!  

However, the reciprocal of an infinitely large number is an infinitely small number, namely 0.  So this 

lower face shown in the diagram goes by the name (00-1).  By the way, the minus sign is often drawn 

above the number rather than in front of it, but my computer is not that smart (I’m surprised it had  ∞.) 
 

 The second answer is that the three numbers obtained using the reciprocals are really the 

coordinates of a vector perpendicular to the plane they represent.  It is convenient in a branch of 

mathematics called Vector Analysis to represent plane by their normal vector.  Using that normal, it is 

relatively easy to calculate things like the angle two plane make where they intersect, and the direction of 

the line the intersection, which would be a crystal edge.  Those are nice things to be able to do, but we 

are not going to have reason to resort to that in the discussions in this issue. 
 

 One thing we will have occasion to examine is the meaning of what symmetry operations really 

involve.  The symbolism looks mathematical, but in reality it falls more into the realm of symbolic logic.  

Symmetry operations are in reality simple rules for interchanging the numbers in a Miller Index.  

Let’s look at an example.  Suppose that the xz-plane was a shiny surface – a mirror.  The reflection of the 

red plane in that mirror would be the image shown in green.  We can specify what we have done by 

saying, “reverse the coordinate along the y-axis but leave the other two unchanged.  In symbols, this 

would look like a recipe for an operation:                           (x,y,z)          (x,-y,z)      ;     (421)         (4-21) 
 

Rotations can be specified in the same sort of way.  A 90
o
 rotation about the z-axis would shift 

all coordinates along the x-axis to lie along the y-axis, and all those originally along the y-axis to lie 

along the negative x-axis.  Symbolically:        (x,y,z)         (-y,x,z)            Doing this four time ought to 

return use to where we started:   

    (421)         (-241)         (-4-21)         (2-41)        (421) 

 

Read on in the next article to see how this can be used to deduce crystal shapes. 



3 

The Role of Point Groups in Cubic Crystal Shapes 
 

Donald Howard 

 

 

In the last issue of the Microprobe, Herwig Pelckmans has given a beautiful explanation of the 

many forms of fluorite crystals.  The description is so extensive and detailed, one might be led to think 

that that was a complete description of the range of forms a cubic mineral could form.  But with a little 

reflection, you will soon come to realize that some forms are missing; in particular the tetrahedron and 

the pyritohedron are reasonably common forms that are not represented.  Why not?  Where do such 

forms fit into the overall picture?  In order to answer that question, we have to delve a little deeper into 

what exactly constitutes a crystal structure, and into what we mean by symmetry operations. 

 

The Group 

 

 One of the logical mathematical sub-fields is called group theory.  A group is formed around one 

or more logical operations.  We then define one member of the group, apply the operation(s) repeatedly, 

and in that way generate the members of the group, all of whom are related by those operations. 

 

 Let’s try an example.  Suppose that our operations are multiplication and division by 2.  Let’s 

pick the number 1 as a member of the group.  Multiplication by 2 then yields 2, 4, 8, 16, 32, 64, …..   

Division yields 0.5, 0.25, 0.125, 0.0625, …..  In this way we generate an infinite number of members, 

and we can start with any of the numbers in the group and reach any other by repeated application of one 

of the operations. 

 

 The concept of a lattice is another example of a group.  The operations involved are a set of three 

translations; in the case of a cubic lattice, these are along the three orthogonal directions x, y, and z.  The 

one member that we start with is the unit cell, which in this case is a cube.  Performing the allowed 

operations generates an infinite group of cells that cover all space with no parts left out or overlapped. 

 

 The set of faces that compose a given crystal form, say a dodecahedron, form such a group, in 

this case a finite group with twelve members.  The operations involved are the symmetry operations that 

pertain to the particular crystal structure.  Let us review those first. 

 

The Symmetry of a Cubic Lattice 

 

 Let us consider what we mean by a symmetry operation.  Consider first a four-fold rotation axis 

along the x direction.  The basic rotation of 90
o
 transforms the y-axis into the z-axis and the z-axis into 

the negative y-axis.  We represent this symbolically as: 

  (x,y,z)            (x,-z,y) 

Doing this four times returns us to the original position.  

Suppose we pick as our original member the face {010}.  

Then operating successively will give: 

(010)          (001)          (0-10)         (00-1)        (010) 

 

 Now there are actually two more four-fold 

rotation axes, one around y and one around z.   

The z-axis rotation would be:       (x,y,z)         (-y,x,z) 

(010)          (-100)          (0-10)          (100)         (010) 

The y-axis rotation would be:       (x,y,z)         (-z,y,x) 
(010)           (010)           

                              z 

 

                                         * 

                                         *            y 

 

 

                   x 

                                z 

 

                         *    *            90
o 

             -y 

 

            Result of a 90
o 

                      x            rotation about x 
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Taken together, they generate as a group the six faces of the cube: 

 (100)     (010)     (001)     (-100)     (0-10)     (00-1) 

 

 But wait.  There are other symmetry operations possible that also generate faces in the same 

group.  One is a mirror plane perpendicular to each of the three four-fold rotation axes. 

 Perpendicular to x:  (x,y,z)            (-x,y,z)  (100)            (-100) 

 Perpendicular to y:  (x,y,z)            (x,-y,z)  (010)            (0-10) 

 Perpendicular to z:  (x,y,z)            (x,y,-z)  (001)            (00-1) 

The combination of a fourfold axis and perpendicular mirror is given the symmetry symbol    “ 4/m ”. 

 

 There are in addition four threefold rotation axes, one along each body diagonal.  Rotation 

around these axes interchanges the principal directions: 

  About [111]:  (x,y,z)          (y,z,x) 

  About [-111]:  (x,y,z)          (-y,z,-x) 

  About [1-11]:  (x,y,z)          (-y,-z,x) 

  About [11-1]:  (x,y,z)          (y,-z,-x) 

There is also the inversion operation: (x,y,z)          (-x,-y,-z) 

The combination of a threefold axis and inversion is given the symmetry symbol    “ -3 ” . 

 

Finally, there are six twofold rotation axes together with their perpendicular mirror planes: 

 About [110] (x,y,z)          (y,x,-z)      mirror (x,y,z)          (-y,-x,z) 

 About [101] (x,y,z)          (z,-y,x)      mirror (x,y,z)          (-z,y,-x) 

 About [011] (x,y,z)          (-x,z,y)      mirror (x,y,z)          (x,-z,-y) 

 About [-110] (x,y,z)          (-y,-x,-z)      mirror (x,y,z)          (y,x,z) 

 About [10-1] (x,y,z)          (-z,-y,-x)      mirror (x,y,z)          (z,y,x) 

 About [0-11] (x,y,z)          (-x,-z,-y)      mirror (x,y,z)          (x,z,y) 

The combination of a twofold axis and perpendicular mirror is given the symmetry symbol    “ 2/m ”. 

 

Overall, therefore, the symmetry symbol for the full cubic lattice is  “ 4/m-32/m ” . 

 

The Point Group 

 

 However, a lattice is just a mathematical construct.  To make it into an actual crystal structure, 

we must add a basis of one or more atoms into the unit cell.  The combination of basis and lattice 

becomes the crystal structure.  And depending on exactly how we arrange these basis atoms, it will also 

have a particular symmetry to add to that of the lattice.  The combined symmetry will be limited to those 

operations that both the lattice and the basis have in common.  This combine symmetry is what we refer 

to as the point group. 

 

 The simplest basis we could add would be just one single atom in the unit cell.  Since a lone 

atom would possess spherical symmetry, the resulting point group would be identical to that of the 

lattice, namely  4/m-32/m .  This is sometimes called Simple Cubic.  But this is not very interesting, 

since no natural material crystallizes in this way. 

 

 The next simplest basis is two identical atoms, one at the 

corner and one at the body center, [1/2,1/2,1/2].  The resulting 

point group is often referred to as Body-Centered Cubic.  Once 

you combine this basis with the cubic translations you see that 

each corner of the unit cell is occupied, and each body center is 

filled.  That means that every atom is surrounded by eight nearest 

neighbors.  Full cubic symmetry is satisfied, so the structure 

belongs to the point group 4/m-32/m .  Numerous elements 

  The Body-Centered Cubic basis 
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crystallize in the BCC structure, but the only one that I know of 

that occurs naturally is native iron. 

 

 Another common basis included four atoms, one at the 

corner of the unit cube and one each at the three surrounding 

centers of the faces.  Naturally, this is the Face-Centered Cubic 

structure.  Again, when combined with translation, each corner of 

the unit cell and each face center will be occupied.  Each atom will 

have six nearest neighbors.  Once again, full cubic symmetry is 

satisfied, so the structure belongs to the point group 4/m-32/m .  

Numerous other elements prefer this structure, among them the 

native metals copper, silver, and gold. 

 

 Most naturally occurring minerals are made up of more 

than one type of atom.  Several of the simplest of these are closely 

related to the FCC structure.  Imagine one type of atom occupying 

the corner and face centers, while a different type of atom occupies 

the body center and the midpoint along each of the edges.  These 

eight atoms form a smaller cube, with corners alternately occupied 

by each type of atom.  This is usually referred to as the NaCl 

structure, which again belongs to the point group 4/m-32/m.  Many 

ionic compounds of the type AB crystallize in this way.  Among 

them are minerals such as halite and galena. 

 

 Ionic crystals of the type AB2 often form in another config-

uration related to the FCC structure.  This is the arrangement that 

fluorite adopts.  Here the calcium atoms take on a FCC array, with 

the fluorine atoms arranged at the (1/4,1/4,1/4) points in such a way 

that they form about each calcium atom a cube whose side is just 

half the size of the unit cell.  There are twelve atoms in the basis, 

four of one type and eight of the other.  The fluorine atoms form a 

simple cubic array where half of the “cells” are occupied by a 

calcium atom and half are empty.  Again, just as with the other 

structures introduced above, full cubic symmetry is maintained, so 

that we have the  4/m-32/m  point group.  All the forms of crystals 

discussed for fluorite in the last issue are going to be possible for 

any mineral that crystallizes under the  4/m-32/m  symmetry. 

 

  The Face-Centered Cubic basis 

 

 

 

 

 

 

 

 

 

 

     The NaCl basis 

 

 

 

 

 

 

 

 

 

 

The Fluorite basis 

 

 
 

The Seven Fundamental Forms of the  4/m-32/m  Symmetry Group 

 
 {100}               {110}               {210}   

 Cube       Dodecahedron     Tetrahexahedron  

 
   {111}               {211}              {221}          {421} 

           Octahedron      Trapezohedron     Trisoctahedron                Hexoctahedron 
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The Sphalerite Point Group and  -43m  Symmetry 
 

 Not all point groups are going to exhibit full cubic 

symmetry.  Consider first the structure of sphalerite , Zn S .  This is 

really rather closely related to the fluorite structure, but with half of 

what were fluorine atoms replaced by sulfur and the other half 

removed.  The removal is of every other corner of the small cube, 

so that only a tetrahedral arrangement of atoms remain.  The zinc is 

located at the middle of a tetrahedron of sulfur atoms and the sulfur 

is at the middle of a tetrahedron of zinc atoms. 
 

 The resulting structure still has all four three-fold rotation 

axes remaining, but overall inversion is gone.  The mirror plane 

parallel to the cube faces are gone, though the mirror planes 

perpendicular to the [110] directions remain.  The normal four-fold 

rotation axes are gone, though they are replaced by what are called  

four-fold rotary-inversion axes who operation can be written:  (x,y,z)            (-x,z,-y) 

         (x,y,z)          (z,-y,-x) 

         (x,y,z)          (y,- x,-z) 
These are abbreviated  -4 , so the overall point group is given the symbol  -43m  .  This then is the class 

that sphalerite belongs to.  Other minerals, such as tetrahedrite and helvite also belong to this symmetry 

class. 
 

 To see what effect this has on the shape of crystals, let us apply some of the symmetry 

operations to the seven fundamental forms illustrated above.  We have already shown that the three-fold 

rotations are sufficient to generate all the faces of the cube, so that remains unchanged.  Let us next 

consider the octahedron.  We start with one face, (111), and apply the three-fold rotations: 

 (x,y,z)          (y,z,x)  (111)          (111) 

 (x,y,z)          (-y,z,-x)  (111)          (-11-1)          (-1-11)          (111) 

 (x,y,z)          (-y,-z,x)  (111)          (-1-11)          (1-1-1)          (111) 

 (x,y,z)          (y,-z,-x)  (111)          (1-1-1)          (-11-1)          (111) 

Notice that only four group members are generated: 

 (111), (1-1-1), (-11-1), and (-1-11). 

A quick look at the three rules for rotary-inversion above 

shows the same set of faces.  And if you apply the rules 

farther above for the six mirror planes, you get the same 

result.  So instead of the eight faces of the octahedron, we 

have here only four faces, and these make up a tetrahedron. 
 

 Now that is not to say that the other four faces do 

not exist.  Rather, they belong to a different group      (-

111), (1-11), (11-1), and (-1-1-1) .  These two groups are 

different; they may have a different arrangement of atoms 

on their surface and therefore grow at a different rate.  So 

these two different groups may develop differently and the 

crystal may end up with different sized faces for each of 

the two groups.  (See for example the sphalerite crystal 

from New Zealand illustrated below.) 
 

 You can go through the other five basic forms, applying the rules just as above, to see what 

happens in each case.  For the sake of simplicity, we will not do that in detail, but only give you the 

bottom line.  The dodecahedron (110) and the tetrahexahedron (210) will generate the full set of faces.  

All the others come out differently.  The appropriate set of seven basic forms for  -43m  symmetry are 

given at the top of the next page. 

The Sphalerite basis 

 

 
 

 

The Tetrahedron 

111

-11-1
-1-11
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 Some minerals that belong to the  -43m  

symmetry group preferentially form as simple 

tetrahedra.  One of those, tetrahedrite, actually 

derives its name from this tendency.  It has a 

considerably larger basis – (Cu,Fe)24 Sb8 S26 – for a 

total of 58 atoms.  A crystal of tetrahedrite is shown 

at right. 

 

 Another mineral in this symmetry group is 

helvine, Mn4 (Be3Si3O12) S .  Again, the basis is quite 

large, but the atoms are arranged to preserve cubic 

symmetry.  The fundamental shape of the crystals are 

simple tetrahedral, as shown at the bottom of the 

page. 

 

 Though sphalerite, ZnS, has a much smaller, 

simpler basis as given above, the crystals tend to 

incorporate several of the basic shapes, and therefore 

can become very complicated, just as we found in the 

last issue for fluorite.  We show three examples of 

sphalerite crystals on the next page, together with 

diagrams to show what faces are involved. 

 

Sphalerite is one of the harder minerals to 

identify.  The crystals do not have the obvious 

appearance of a cubic mineral.  That is compounded 

by the fact that the color of the mineral is very 

variable.  Pure ZnS would be nearly colorless, but in 

natural material, some iron normally replaces zinc 

atoms.  As the iron concentration increases, the color 

ranges from yellow through orange into darkening 

shades of brown, and if enough iron is present, may 

be nearly black.  In high iron varieties, nearly half of 

the zinc atoms have been replaced.  The structure 

does not appear to be stable for higher iron 

concentration. 

 

 

The Seven Fundamental Forms of the  -43m  Symmetry Group 

 
 {100}               {110}                {210}   

 

 
 {111}               {211}               {221}          {421} 

 
 

Tetrahedrite on Quartz  

                Ophir Hill Mine, Tooele Co., Utah 

 
 

Helvine  

             Tungsten Hill Shaft, Luna Co., N.M. 
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  Sphalerite       Joplin, Jasper Co., Missouri 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Sphalerite   Kauri Mtn., Whangarei, New Zealand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Sphalerite       Cumberland, England 
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The Pyrite Point Group and  2/m-3  Symmetry 

 

 The structure of pyrite is also closely related to that 

of fluorite.  Remember that half of the smaller cubes of 

fluorine atoms had no atoms inside them.  Now imagine the 

green spheres as representing iron atoms and the orange 

spheres sulfur atoms.  Suppose that the diametrically 

opposite corner atoms (shown in red in the diagram at right) 

are attracted and move toward each other.  This will distort 

the inner cube into a rhombohedron.  The six atoms at the 

other corners will have to move out as the cube is squished, 

and will themselves be attracted to sulfur atoms in adjacent 

cubes to form their own sulfur-sulfur bonds.  A view of the 

resulting structure looking along one of the cubic (100) 

directions is shown undistorted (fluorite) in the middle of the 

page and fully distorted (pyrite) at the bottom of the page. 

 

 The resulting sulfur-sulfur bond lie along the {111}  

directions and preserve the three-fold rotation symmetry of 

the overall lattice.  Unlike with the sphalerite lattice as 

described above, this distortion maintains the inversion 

symmetry.  However, the fourfold rotation symmetry is now 

gone irretrievable.  A two-fold rotation symmetry still exists 

along the [100] direction, together with the mirror plane that 

is perpendicular to it.  The two-fold rotation axis along the 

[110] direction together with its mirror plane are no longer 

present.  To sum up the remaining symmetry, the symbol for 

this particular kind of point group is  2/m-3 . 

 

 As we have seen, the three-fold rotation axes are 

sufficient to guarantee that the six faces of the cube are an 

acceptable group, so the cube is one structure in this point 

group as well.  For the octahedron, the presence of the 

inversion symmetry operation:       (x,y,z)          (-x,-y,-z) 

Will restore the other four members to the group: 

 (111)     (1-1-1)     (-11-1)     (-1-11). 

           (-1-1-1)    (-111)       (1-11)      (11-1). 

So the octahedron is a possible structure in the point group. 

The dodecahedron works as well. 

 

 However, consider the (210) group.  We start with 

the three-fold rotations: 

 (x,y,z)          (y,z,x)  

      (210)           (102)          (021) 

 (x,y,z)          (-y,z,-x)  

      (210)           (-10-2)         (0-21) 

 (x,y,z)          (-y,-z,x)  

      (210)            (-102)         (0-2-1) 

 (x,y,z)          (y,-z,-x)  

      (210)            (10-2)         (02-1) 

The mirror operation along x and y will add three more 

faces:  (2-10),  (-210),  (-2-10) 

The Structure of Pyrite 

 
 

Pairs of sulfur atoms have moved 

together.  The colored bars represent the 

sulfur-sulfur bonds.  Darker colors are 

above; lighter colors are below. 

The Structure of Fluorite 

 

 

The Fluorite Lattice 

 
Opposite corners of the fluorine sub-

lattice are shown in red. 



10 

Taken together, these give twelve of the twenty four faces 

that were previously the tetrahexahedron.  Moreover, the 

two-fold rotations and the inversion operation will change 

signs but will not rearrange the order of the sequence of 

numbers.  So the {210} group and the {120} group are 

different in this symmetry.  The resulting crystal form with 

twelve faces is called a pentagonal dodecahedron, or usually 

a pyritohedron. 

 

 The only other group similarly affected in this 

symmetry is the hexoctahedron {421} which has no 

repeating indices.  So the entire set of forms under  2/m-3  

symmetry is given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 For pyrite, the primary forms are the pyritohedron, octahedron, and the cube, and these are seen 

individually and in combination with each other.  Pyrite octahedra are usually small and very often are 

truncated by cube faces. 

 

 Simple pyritohedral crystals are not uncommon.  While cubes with smooth faces do occur (as 

shown below), many cubic crystals show modifications of combine faces, from crystals that are nearly 

equally developed to those with only small edge beveling.  The striations so often seen on pyrite cubes 

are the result of repeated switching from the {100} face to the {421} face and back again.  Notice that 

the direction of the striations are mutually perpendicular, maintaining three-fold symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Pyritohedron 

 
 

2102-10

102

021

02-1

10-2

The Seven Fundamental Forms of the  2/m-3  Symmetry Group 

 
 {100}               {110}               {210}   

 
   {111}               {211}              {221}          {421} 

 

Cubic Pyrite 

 
Pyrite on Dolomite 

          Paolo, Kansas 

Octahedral Pyrite 

 
Pyrite on Heulandite 

          Yaquina Head, Agate Beach, Oregon 
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 Pyrite on Heulandite           Rock Island Dam, Chelan Co., Washington 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Pyrite in Talc             Cow Creek, Glendale, Douglas Co., Oregon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Pyrite on Celestine                        Briar, Arkansas 
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 Pyrite in Quartz                  Darwin, California 

 

 Another mineral that also has a structure that places it in the  2/m-3  point group is bixbyite, 

(Mn,Fe)2O3 .  The iron content can be anywhere from very low (1%) to dominant (60%).  The crystals 

are normally cubes with small trapezohedral (211) faces modifying the corners.  We complete the survey 

of this symmetry group with the illustration below of such an iron-rich crystal from Utah. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Bixbyite      Thomas Range, Juab Co., Utah 

 

 

Conclusion 

 

 Several other lower symmetry point groups have been identified, but may not have naturally 

occurring mineral representatives.  There are, after all, many compounds that have been prepared and 

crystallized but that have not been found naturally.  The three important symmetries for natural minerals 

are  4/m-32/m ,  -432/m,  and  2/m-3 .  We hope this explanation of what to look for in your cubic 

crystals will help in identification and appreciation of cubic crystals. 

 
 

 



13 

Distinguishing between Adamite and Austinite from the Gold Hill Mine, Utah 
 

Don Howard 

 

 At last year’s NCMA meeting there were quite a number of specimens on their free table from 

Gold Hill, Utah.  Judging from the size, the quality, and the labels, they appear to have been collected 

many years ago and kept by a dealer for future sale.  There were sufficient left unclaimed that found their 

way to our give-away table and were subsequently claimed.  The material was very nice.  However, in 

looking over a number of the pieces, I found that what was written on the label and what was actually on 

the specimen was not very closely correlated.  Since many of these claimed to be cuprian Adamite or 

cuprian Austinite, I thought a few words and pictures might help the new owners to verify their finds. 
 

 Adamite and Austinite can be very hard to tell apart.  Both are zinc arsenates, and they can be 

mutually present in the same specimen.  Both form orthorhombic crystals, and both can vary from 

colorless into shades of green as copper substitutes in the zinc site. 
 

 Adamite,  Zn2(AsO4)(OH) , 

is the more common mineral.  In pure 

form, it is clear and colorless, but as 

copper substitutes for zinc, it takes on 

various shades of green.  Chemically, 

it is isostructural with Olivenite  

Cu2(AsO4)(OH) , and a continuous 

series appears to extend between the 

two end members.  Both minerals are 

found at Gold Hill together with a 

wide range of intermediate concen-

trations, referred to by modifiers, 

such as cuprian Adamite and zincian 

Olivenite.  Crystallographically, 

adamite is orthorhombic and exhibits full orthorhombic symmetry,   Fig. 1  Colorless Adamite 

crystals belonging to the  2/m2/m2/m  space group.  Crystals are  

elongated along the c-axis, with a basic diamond-shaped cross-section formed by the four {110} faces.  

The termination usually involves {101} faces, which appear to be triangular.  On small crystals and 

clusters, it is often these tiny triangular faces reflecting the light that are the best indication that you are 

looking at Adamite. 

 Austinite,  CaZn(AsO4)(OH), 

was first described from Gold Hill.  It 

also forms as clear, colorless crystals 

when pure, and takes on varying 

shades of green as copper replaces 

zinc.  It is isostructural with 

Conichalcite,  CaCu(AsO4)(OH), in a 

continuous series.  Again, both ends 

of this series occur at Gold Hill.  
 

A major difference between 

Adamite and Austinite comes in their 

crystal structure.  Austinite is also 

orthorhombic, but by replacing half 

the zinc with calcium, the mirror 

            planes vanish, putting Austinite in the       Fig. 2  A Scepter of Austinite 

Habit of Adamite 

 

110 -110

101

10-1

Habit of Austinite 

 

110

1-10

111

1-1-1



14 

222  space group.  The terminal planes are of 

the forms {111} and related forms {nn1} that 

blend into the prism faces rather than cut 

across them.  The general appearance of 

Austinite is therefore of blades.  Twinning on 

(110) is common, leading to a tendency to 

form sheaves of thinned, parallel blades.  In 

fig. 3, two of the blades can be seen edge-on 

at upper right; the chunky crystal to the right 

of them is actually Adamite.  In fig. 4, the 

nearly parallel nature is evident. 
 

 Clear, colorless crystals of both 

minerals are found primarily in the upper 

regions of the Gold Hill Mine where few 

copper minerals are present.  The matrix is 

generally oxides of iron that may contain     Fig. 3  Thin blades of Austinite  

manganese minerals such as chalcophanite,an 

oxide of zinc and manganese.  In other 

regions, both minerals take on increasingly 

rich green colors as the concentration of 

copper increases.  Figures 6 through 8 show a 

variety of these differing shades. 
 

 Fig. 5 shows a specimen with the 

other two end members of these series.  

Olivenite, as the name implies, is more of as 

olive green than cuprian Adamite.  At Gold 

Hill, crystals of Olivenite tend to be fibrous 

with especially irregular, brushy ends.  If the 

fibers are fine enough, they appear almost 

white.  Conichalcite is always in small 

spheres with smooth surfaces.  In fact, if the 

surface of the balls begin to show evidence of      Fig. 4  Sheaves of parallel growth Austinite blades 

crystal faces, you are probably have at least a 

surface layer of cuprian Austinite. 
 

 Generally speaking, color is not a 

good indicator of whether you are looking at 

Adamite or Austinite.  The habit of the 

crystals is a much surer way to tell the two 

minerals apart.  When the clusters become too 

small to see the faces of crystals, the only sure 

way to differentiate is by detecting the 

presence or absence of calcium, such as using 

XRF in a Scanning Electron Microscope.   
 

 All the pictures used in this article 

have been taken of specimens in my own 

collection from Gold Hill Mine, Tooele Co., 

Utah. 

     

          Fig. 5  Conichalcite balls on fibrous Olivenite 
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Fig. 6  Cuprian Adamite crystals   Fig. 7  Clusters of cuprian Adamite 

 

 

Fig. 8  Clusters of cuprian Austinite   Fig. 9  Conichalcite balls on Beudantite 
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Map to the Oak Grove Blvd. meeting site 
 

2930 SE Oak Grove Boulevard 
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